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Abstract

This paper discusses the potential effectiveness of ubigui-
tous, communicating, dynamically confederating security
agents for monitoring and controlling communications
among the components of preexisting applications. These
agents remember events, communicate with other agents,
draw inferences, and plan actions to achieve security
goals. Key features of this approach are: (1) linguistic
mechanisms for specifying agents, security models, and
communications, (2) compilation . mechanisms  that
automatically create and install agents as wrappers around
existing application components, (3) algorithmic defini-
tions of how agents communicate to increase the security
of systems, and (4) a library of agent code fragments out
of which the compilation mechanism builds actual agents.
Automating the generation of security agenis raises the
possibility of the cost-effective generation of enough re-
dundant agents to tolerate some erroneous or subverted
elements.

Introduction

The Internet is forcing a paradigm shift in computer se-
curity. Rather than the traditional focus on controls that
are simple, passive, verifiable, and built-in, open network
systems need computer security that is:

*» Flexible and context sensitive

» Active in responding to threats

» Reliable through redundant checking

* Incrementally incorporated into existing systems

We believe the first step toward achieving these goals is
to wrap conventional software components with programs
that analyze communications into and out of applications,
monitoring and controlling these communications as ap-
propriate. To effectively perform these tasks, such pro-
grams need inherent goals, independent processing, com-
munication facilities, and memory mechanisms. This
combination of features defines software agents [1, 2].
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Building on the notions of robots, softbots (software ro-
bots) and safety, we call such agents SafeBots. Individual
security agent programs are called safebots.

While there are many challenges facing this paradigm
for security, ongoing gains in information technology
favor its ultimate success. Key advances include

* Distributed systems. Agents can exploit hard-
ware isolation and encrypted communications to re-
duce single sources of catastrophic failure and imple-
ment redundant controls.

* Decreasing hardware costs. More processing
and communications bandwidth can now be devoted
to security without degrading response. Eventually, it
will become cost-effective to install safebots on diffi-
cult-to-subvert, dedicated processors.

¢ High-level protocol standards. Emerging stan-
dards like WWW and CORBA make it increasingly
practical to understand component interactions and to
automate the generation of component wrappers.

* Very high level specification languages.
Improving technology for automatically compiling
specifications into operational software allows the
creation of security systems from high-level require-
ments.

This paper describes an architecture for secure comput-
ing based on SafeBots. We note that we are only at the
initial stages of experiments and implementation of the
mechanisms described below.

Safebots as wrappers for application
components

The modern Internet is composed of many independent
domains, sharing a common set of protocols but often
radically different security policies. Lacking centralized
authority, it follows that security mechanisms based on
imposing rules on others are doomed to failure. SafeBots
provides an integrated architectural framework for address-
ing the security policies of heterogeneous information
systems. A safebot provides the “locally appropriate” se-
curity for a resource, without imposing local constraints



on the global system. SafeBots allow the construction of
“walls” and “gates™ around one’s own territory that enable
cooperation and commerce with one’s neighbors, without
having to completely trust those neighbors to be well-
behaved.

Safebots monitor communications by wrapping an ap-
plication’s components [3]. In wrapping, a component,
application, or computer, X, is replaced by another com-
ponent, application, or computer, Y, such that Y receives
all messages to and from X, censors or edits them, and
passes them on to X or an alternative recipient. (Proxy
servers are thus a simple form of wrapper.) Safebots can
detect errors or suspicious patterns of activities; block
inappropriate actions; require further authentication before
allowing access; add to the history of the user, session, or
component; communicate with other safebots about po-
tential intrusions; fix or randomize the duration of the
component call to thwart use of timing covert channels;
and check that responses do not leak sensitive informa-
tion.

Not all safebots are wrappers. Some safebots are agen-
cies that serve as repositories of information and behav-
iors (and are thus a form of mediators [4]). Agencies
communicate with other safebots. Safebot agencies pro-
vide a mechanism for controlled sharing of information
about users, computers, sites, system status, normal pat-
terns of behavior, histories of intrusions, recent attack
patterns, corrupt software, and other safebot agencies.
Some safebot agencies are expert assistants supporting
security officers. By being voluntary services with limited
trust in other safebots, agencies conform to open net-
works composed of many independent administrative do-
mains. A given safebot may confederate with different
agencies for different purposes.

Figure 1 shows how SafeBots preserves the structure
and code of a distributed application while extending it to
be a highly secure and survivable application.

Safebot collaboration and
communication

We illustrate the value of active, communicating agents
with examples of potential agencies. Many of these agen-
cies accumulate information from wrapper agents, man-
age, summarize, and refine the information, and redistrib-
ute it as appropriate to other agents and to security offi-
cers.

Agencies that manage information about
intrusions

* Security status agencies. Safebots wrapping
application components can subscribe to security
status agencies, informing these agencies of anoma-
lous behaviors and modifying their access mecha-
nisms in response to alett warnings from the security
status agencies.
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Figure 1: Existing applications evolve
into survivable applications by auto-
mated addition of safebot wrappers,
agencies, and expert assistants

* Behavior profiles agencies. These agencies
generate a profile of the expected behavior of author-
ized users with respect to different resources. Safebots
protecting a resource use that profile to detect anoma-
lous behaviors. (Forrest et. al’s work [5] on character-
istic behavior patterns of programs is an example of
biologically-inspired data for such agencies; Mukher-
jee et. al [6] discuss novel intrusion detection mecha-
nisms.)

¢ Attack patterns agencies. These agencies man-
age information about attack methods so the signa-
ture of newly detected viruses, scanners, worms, ro-
bots, and other attacks can be distributed rapidly to
safebots that monitor for such attacks.

Agencies that manage information about users

* Authentication agencies. Conventional authen-
tication is usually a rigid, static decision removed
from supporting context like the user’s location, re-
cent terminal idle time, and the session’s recent his-
tory of anomalous or suspicious actions. The authen-
tication agency collects reports about user actions and
dynamically determines a confidence level in the
user’s identity. A safebot protecting a critical re-
source may check with the user’s authentication serv-
ice before granting a request, and then may demand
redundant authentication. For example, the authenti-
cation service could maintain a list of user-provided
memories that no one else is likely to know. The ad-
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Figure 2: Authentication agencies verify an individual’s identity.

other safebots. They
know which safebots
are more susceptible to

vantage of this approach is that it requires no special
hardware and can be used when the user is at a loca-
tion where authentication hardware is missing or
broken. Such a protocol is iflustrated in Figure 2.

* Service-worthiness agencies. Computer secu-
rity systems traditionally divide potential users into
account holders (with privileges), and guests
(everyone else, with more limited access). In the net-
worked universe, finer classifications of individuals
are needed. For example, just as we won’t want to
provide any services to an individual who has been
recognized elsewhere as a cracker; we may want to
provide premium service to an individual recognized
as a “big spender.” This is realized by having a safe-
bot ask its “service-worthiness agency” about a po-
tential client. Much like a “consumer credit agency,”
the service-worthiness agency would take experience
reports from its customers about individuals and sites
and develop profiles of those entities. Clearly, the
agents need to respect privacy constraints and plan
context-specific responses. Within more structured
organizations, the service-worthiness agency will se-
curely identify the access privileges of the user
(clearances, kinds of access rights, level of trust) so
that administratively remote resources can make ac-
cess control decisions based on the user’s privileges
as attested to by a trusted organization.

Agencies about services

* Service authentication. Just as services check
on users, users check with a service-authenticating
agencies before trusting a network service. Certificate
authorities (e.g., Verisign [7]) are initial instances of
such agencies.

* Downloading agencies. Users and their organiza-
tions will want to check the trustworthiness of ap-
plets before downloading them. Since applets can be
loaded with various privileges, many kinds of ap-
proval are possible. The downloading agency may
provide the applet, present a cryptographic checksum
for the applet, or just attest to some degree of trust-
worthiness for the applet’s source.
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subversion, collect re-
ports about suspicious
acts of safebots, and dynamically adjust their trust-
worthiness ratings. (Reasoning about network trust
is examined by Blaze et. al [8] and Roscheisen and
Winograd [9].)

Agencies supporting security officers

* Expert associates. In some sense, all security
agents support the security officer, but some agents
can be designed specifically as expert associates to
the security officer. These expert associates gather in-
formation from other agents, present it to the secu-
rity officer, and support the security officer in re-
sponding to ongoing attacks. A key point is that the
security officer can interrogate the safebots about cur-
rent and recent events and dynamically modify their
operating procedures, all as a natural result of the
safebots’ ability to communicate.

Protecting safebots from bypass and
subversion

SafeBots builds on, complements, and extends the secu-
rity provided by encryption mechanisms. We assume that
encryption protects safebot-to-safebot communications
from eavesdropping and spoofing. The communications of
the application programs being protected may or may not
already be encrypted. If they are, safebot wrappers monitor
the communications before encryption and after decryp-
tion. If the application communications are not encrypted,
safebot wrappers are a convenient way to add encryption
and safebot agencies are a way to support key manage-
ment. Encryption can also help sequester application
components and prevent the safebot from being bypassed.

Safebots must be protected from subversion of their un-
derlying operating system. Approaches for dealing with
this threat include:

* Running safebots on dedicated hardware.
That way, subversion of an operating system under
the application does not subvert its protecting safe-
bots.

* Continuous mutual vetting by distributed
safebots. An intruder who has subverted an operat-
ing system may find it difficult to subvert all the



safebots running on that machine and arrange for
them to continue behaving in ways that do not arouse
suspicions.

* Varying safebot trust in other safebots
based on the environments in which they
run. Safebots that run in more secure environments
with more checking can be trusted more than safebots
in more open systems.

Constructing safebots

A key pragmatic problem for SafeBots is the multiplic-
ity of component interfaces and security requirements. The
goal of the SafeBots architecture is to reuse common so-
lutions while making it cost effective for agents to handie
the specific application protocols and protection require-
ments of each system. The components of the architecture
raise the Ievel of safebot specification and automate safe-
bot construction, making it easier to impose security
mechanisms on existing applications, and allowing cost-
effective experiments with alternative security policies.
The key components of the SafeBots architecture are:

* OntoSec: a common language for specifying the
security requirements of each application and for sup-
porting communication among safebots

* Swathe a compilation and automatic programming
system for weaving library components together to
build safebots

* SecLib: a library of reusable components and frag-
ments for building safebots

Figure 3 illustrates the relationship of these components
in producing safebots.

OntoSec

Two linguistic issues arise with SafeBots:
(1) describing the specification of safebots to the com-

piler and (2) the language used by safebots for communi-
cation. For generality, we define these as parts of a com-
mon language, OntoSec (for “ontology for security.”)
OntoSec represents security requirements, specifications,
goals, actions, events, and knowledge of agents. For ex-
ample, OntoSec can describe protocols; the security prop-
erties of resources and components; the privileges of users
and sessions; events, actions to be taken on events, and
semantic bindings for implementing those actions; and
histories of users and systems. OntoSec provides a vo-
cabulary for specifying the security properties to be en-
forced by safebots and for safebots to communicate with
each other and with security personnel.
Important dimensions of OntoSec are that:

» It is expressive enough to specify policies, status,
knowledge, beliefs, and concerns. It must support
safebots in determining the level of trust to place in
messages and requests from other safebots.

¢ It is directly computable. That is, we want a system
that infers the consequences of a collection of security
statements in a reasonable amount of time.

¢ It provides a way of unifying programmatic behavior
with reasoning.

We are exploring the use of a formal, logical language
for OntoSec, with individuals for the actors of security
(e.g., people, sessions, events, histories, applications),
primitive relations for properties of these individuals
(e.g., permissions, locations, privileges), a semantic at-
tachment mechanism for tying syntax to code, and modal
operators for expressing notions such as requirements,
beliefs and probability. Ontologies are an important
theme in current Al research [10]. Examples of ontologi-
cal approaches to security include Yialelis et. al [11] and
the deontic logic work of Bieber and Cuppens [12]. An
important element in the generation of communicating
intelligent agents is an appropriate underlying communi-
cation protocol; KQML [13] is one such language.

User
Specifications

User
Components

To B

Installation
Scripts

N———

S1S-01

Figure 3: Swathe takes user specifications written in OntoSec, combines them
with the library of security components and produces safebots and installation
scripts for these safebots.
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Swathe

SafeBots is based on the wrapability of applications and
components. We assume that components to be protected
(1) are specified—that is, have a well-defined, formaily
representable interface, (2) can be sequestered—that is,
placed where intruders cannot invoke them directly, and
(3) can be substituted—that is, a replacement component
can be introduced into the system in their place. This re-
placement component supports the specified interface,
performs whatever security actions are associated with the
call, and invokes the sequestered, original function to do
the actual work. Examples of wrapped components range
from network proxy servers through UNIX executable
shells on to tracing in Lisp.

Manual wrapping is labor-intensive, cumbersome, er-
ror-prone, and inconsistent. We propose a tool for auto-
matically creating safebots, Swathe. Swathe takes as in-
puts:

¢ The interface definitions of the application compo-
nents

¢ OntoSec specifications of desired security properties

e A library of security algorithms and safebot code
fragments (SecLib)

» The physical organization of the system (e.g., loca-
tions of existing applications)

Swathe constructs a wrapped application or component
that conforms to the specified security properties and a
script for installing the wrapper [14].

Note that Swathe is not dealing with the semantics of
application component interfaces—security programmers
write SecLib routines that can do things with the informa-
tion content being passed. Rather, the automatic pro-
gramming of Swathe adjusts the safebots code to deal
with the syntax of communications—a meore tractable and
quite useful activity.

An important element of this scheme is the existence of
SecLib-—Swathe works primarily by selecting appropriate
elements from this library and coherently knitting them
together.

When a safebot intercepts a method invocation to or
from the wrapped component, Swathe makes additional
parameters available to the safebot. These parameters iden-
tify the calling session, its security context, and the re-
sponsible human source of the call. (Additional parame-
ters of this ilk are already passed by some CORBA im-
plementations of remote procedure calls, e.g, Orbix™; the
magic cookie protocol of HTML is an another contextual
mechanism that could be exploited).

SecLib

SecLib is an expanding collection of algorithms, mecha-
nisms, and safebot code fragments that understand Onto-
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Sec and can be automatically assembled into safebots.
These fragments enable safebots to:
¢ Sense and evaluate their environment to detect secu-
rity threats

+» Understand and reason about OntoSec specifications
» ‘Communicate with other safebots

» Reason about actions to best enforce security policy
in the current context

» Reason about communications received from other
safebots. (For example: Have they been subverted?
What information should I send them? Should we
collectively ostracize them? How does their commu-
nication affect my understanding of my context?).

Additional safebot fragments implement specific secu-
rity algorithms. They focus on redundant user authentica-
tion, data aggregation, statistical analysis, access control,
denial of service due to system overloading, and other
specific threats and controls.

Swathe weaves these safebot fragments into safebots
capable of enforcing OntoSec specifications for the appli-
cation component around which they are wrapped. One
potentially radical approach to security is to include mul-
tiple versions of algorithms and fragments in SecLib,
allowing Swathe to introduce “genetic diversity” into its
space of wrapped organisms. Thus, a hole in one particu-
lar implementation of a component does not render vul-
nerable every user of the semantics of that component.
This could be used to explore the hypothesis that a diverse
ecology of security mechanisms is less vulnerable to a
single-disease catastrophic failure than a monoculture of
identical organisms. Similarly, a system composed of
security elements that trust each other “less than com-
pletely” and whose “genetic code” varies is less exposed to
a single point of failure, much as a biological systems
use multiple immune responses to protect against a vari-
ety of parasites.

Safebots dynamically form federations, joined by- inter-
est in the behavior of particular users, systems, or ses-
sions [3]. They check on each other and evaluate the trust
they place in communications from other safebots. Since
safebots are created by the owners (or “partial owners™) of
components, SafeBots technology supports the realization
of systems embodying multiple, overlapping administra-
tive concerns.

Limitations of agent-based approaches

While safebots offer many advantages over simple,
static architectures for security, they also have several
disadvantages, especially in the near term:

» Initially, safebots will make security administration
more complex. It will be difficult for the average se-
curity officer to-understand everything that is going
on. Configuring safebots to check on each other will
be complex. Eventually, the benefits of redundancy,
high-level specifications, and visualization will make



the security officer’s job easier, but it will be some
time before we achieve enough redundancy to cover
mistakes in administering security.

+ Safebots wrap only application components that have
well-defined application program interfaces (APIs),
specified in a supported interface definition language
(IDL). Applications with complex GUIs or interpret-
ers (e.g., shells, programming environments) are not
good candidates for wrapping. '

« Safebots themselves can become a source of cata-
strophic failure. Subverting a safebot could become a
way to attack systems, and inept security designers
could design safebots that reduce rather than enhance
survivability. SafeBots is designed so safebots can
check on each other and limit their trust in other
safebots. We need to determine the extent to which
these mechanisms are practical.

+ Safebots can degrade the performance and response
time of a system. At a time of crisis, heightened
safebot activity could tie up a system just when it is
most needed. Eventually, safebots will reason about
the effect they are having on performance. Faster
hardware and careful design are keys to long-range
mitigation of this concern.

Conclusion

SafeBots is a vehicle for experiments with cost-
effectiveness of redundant security agents distributed per-
vasively throughout applications. The long term goal of
SafeBots is to make defensive controls dramatically less
expensive and force intruders to breach redundant barri-
ers—turning the advantage to security defense and funda-
mentally changing the balance between penetraters and
security personnel.
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